Synthetic Studies of Trichloroleucine Marine Natural Products. Michael Addition of LiCCl₃ to *N*-Crotonylcamphor Sultam

Sarah E. Brantley and Tadeusz F. Molinski* Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, U.S.A.

MS# OL991256G

tfmolinski@ucdavis.edu

Trichloro aminonitriles 6a-d: The procedure by Inaba¹ was followed except equimolar mixtures of (*R*)-αmethylbenzylamine and 3-methyl, 4,4,4-trilchlorobutanal were reacted. Reaction provided 4 diastereomers in 93 % yield which were purified by silica flash chromatography (15:85 EtOAc/*n*-hexane) followed by HPLC (silica Microsorb, 25 \approx 250 mm, 1:9 EtOAc / *n*-hexane, 13 mL/min.). Isomers **7b**, **7c**, **7a** and **7d** eluted with retention times of 9.6, 10.8, 11.0, 14.0 minutes and recovered ratios of :25:17:44:14, respectively. (**2R,4S)-2-(N-((1'R)-1'-phenylethyl)amino-5,5,5-trichloro-4-methylpentanenitrile** (**7a**): C1₄H₁₇Cl₃N₂; rt = 11.0 minutes; solid; mp 90-91 °C; [α]_D +87.3° (*c* 0.65, CHCl₃); UV (*n*-hexane) λ 209 (11282), 251 (818), 257 (ε 813) nm; IR (NaCl) ν 3321, 2225 cm⁻¹; ¹H NMR (CDCl₃) δ 7.38 (m, 5H), 4.13 (q, 1H, *J* = 6.5 Hz), 3.29 (dd, 1H, *J* = 9.6, 6.2 Hz), 2.72 (dqd, 1H, *J* = 9.4, 6.5, 2.5 Hz), 2.45 (ddd, 1H, *J* = 13.7, 9.6, 2.5 Hz), 1.80 (ddd, 1H, *J* = 13.7, 9.3, 6.2 Hz), 1.40 (d, 3H, *J* = 6.5 Hz), 1.27 (d, 3H, *J* = 6.5 Hz); ¹³C NMR (CDCl₃) δ 142.7 (s, C1), 128.7 (2C, d), 127.7 (d), 126.6 (2C, d), 119.3 (s, C8), 104.7 (s, C7), 56.5 (d, C2), 51.8 (d, C5), 46.9 (d, C3), 37.2 (t, C4), 24.8 (q, C9), 16.9 (q, C6); HRCIMS obsd *m/z* 319.0543 [M+H]⁺, C14H17Cl₃N₂H requires 319.0536.

(2*R*,*AP*)-2-(*N*-((1'*R*)-1'-phenylethyl)amino-5,5,5-trichloro-4-methylpentanenitrile (7b): C₁4H₁₇C₁₃N₂; rt = 9.6 minutes; solid; mp. 80-81° C; $[\alpha]_D$ +135.9° (*c* = 0.75, CHCl₃); UV (MeOH) 209 (10570), 251 (556), 257 (ε 590) nm; IR (NaCl) v 3301, 2229 cm⁻¹; ¹H NMR (CDCl₃) δ 7.38 (m, 5H), 4.11 (q, 1H, *J* = 6.5 Hz), 3.18 (dd, 1H, *J* = 11.6, 3.9 Hz), 2.94 (dqd, 1H, *J* = 10.1, 6.5, 2.1 Hz), 2.46 (ddd, 1H, *J* = 13.9, 11.6, 2.2 Hz), 1.78 (ddd, 1H, *J* = 14.0, 10.1, 3.9 Hz), 1.42 (d, 3H, *J* = 6.4 Hz), 1.06 (d, 3H, *J* = 6.5 Hz); ¹³C NMR (CDCl₃) δ 142.7 (C1), 128.7 (2C, d), 127.9 (d), 126.9 (2C, d), 120.0 (C8), 105.2 (C7), 56.5 (C2), 50.5 (C5), 45.5 (C3), 36.9 (C4), 24.6 (C9), 15.4 (C6); HRCIMS obsd *m*/*z* 319.0541 [M+H]⁺, C₁4H₁₇Cl₃N₂H requires 319.0536. (2*S*,*4S*)-2-(*N*-((1'*R*)-1'-phenylethyl)amino-5,5,5-trichloro-4-methylpentanenitrile (7c): C₁4H₁₇Cl₃N₂; rt = 10.8 minutes; solid; mp 70-71° C; [α]_D -34.6° (*c* 0.41, CHCl₃); UV (*n*-hexane) λ 205 (ε 5000), 252 (ε 2000) nm; IR (NaCl) v 3301, 2218 cm⁻¹; ¹H NMR (CDCl₃) δ 7.38 (m, 5H), 4.09 (q, 1H, *J* = 6.4 Hz), 3.73 (dd, 1H, *J* = 11.0, 4.6 Hz), 2.94 (dqd, 1H, *J* = 9.7, 6.5, 2.7 Hz), 2.46 (ddd, 1H, *J* = 13.8, 11.0, 2.7 Hz), 1.89 (ddd, 1H, *J* = 14.2, 9.7, 4.5 Hz), 1.38 (d, 6H, *J* = 6.5 Hz); ¹³C NMR (CDCl₃) δ 144.2 (s, C1), 128.7 (2C, d), 127.8 (d), 126.6 (2C, d), 119.7 (s, C8), 105.1 (s, C7), 56.0 (d, C2), 50.9 (d, C5), 45.7 (d, C3), 37.0 (t, C4), 21.8 (q, C9), 15.9 (q, C6); HRCIMS obsd *m*/*z* 319.0538 [M+H]⁺, C₁4H₁₇Cl₃N₂H requires 319.0536. (2*S*,*4R*)-2-(*N*-((1'*R*)-1'-phenylethyl)amino-5,5,5-trichloro-4-methylpentanenitrile (7d): C₁4H₁₇C₁₃N₂; rt =

14.0 minutes; solid; mp 101-102 °C; $[\alpha]_D$ +14.6° (*c* 0.55, CHCl₃); UV (*n*-hexane) λ 211 (ϵ 23200), 252 (511), 257 (ϵ 539) nm; IR (NaCl) v 3309, 2214 cm⁻¹; ¹H NMR (CDCl₃) δ 7.38 (m, 5H), 4.14 (q, 1H, *J* = 6.5 Hz), 3.81 (dd, 1H, *J* = 9.7, 6.1 Hz), 2.83 (dqd, 1H, *J* = 9.4, 6.5, 2.7 Hz), 2.44 (ddd, 1H, *J* = 13.7, 9.7, 2.7 Hz), 1.82 (ddd, 1H, *J* = 13.7, 9.4, 6.1 Hz), 1.38 (d, 6H, *J* = 7.0 Hz); ¹³C NMR (CDCl₃) δ 144.0 (s, C1), 128.7 (2C, d),

⁽¹⁾ Inaba, T.; Fujita, M.; Ogura, K. J. Org. Chem. 1991, 56, 1274-1279.

127.8 (d), 126.6 (2C, d), 119.0 (s, C8), 104.8 (s, C7), 56.2 (d, C2), 51.9 (d, C5), 46.8 (d, C3), 37.1 (t, C4), 22.1 (q, C9), 16.9 (q, C6); HRCIMS obsd m/z 319.0549 [M+H]⁺), C14H17Cl3N2H requires 319.0536.

Determination of Stereochemistry of 7a-d NMR spectral comparison of separated isomers **7a-d** reveals characteristic trends for chemical shifts influenced mainly by the newly created stereocenter, C-2 and the benzylic carbon.

The modified Strecker synthesis of (\pm) -6 with (R)- α -methylbenzylamine¹ gave **7a-d** in 44: 25:17:14 % ratio respectively. It is well known that (R)- α -methylbenzylamine with 3-methylbutanal and KCN, under the similar equilibrium conditions, provides the (R)-amino nitrile as the major diastereomer.¹ Table *i* compares the H-2 proton chemical shifts of compounds **7a-d**. It is also documented that the ¹H NMR chemical shift of H-2 for similar (2*R*)-aminonitriles occurs upfield from the corresponding (*S*) epimer by approximately 0.5 ppm. Thus, from comparison of H NMR chemical shifts the pairs of diastereomers with the 2*R* configuration are major isomer **7a** and lesser isomer **7b** and the pairs **7c** and **7d** have the (2*S*) configuration. This was supported by comparison of ¹³C NMR spectra (Table *ii*) which showed upfield shifts of the α -CH benzylic methine and C-1' phenyl ring carbon (~ $\Delta\delta$ +2 ppm) with respect to the 2*S* pair.

The C-4 configurational assignments were revealed after the Strecker reaction was repeated with partially resolved aldehyde (R)-(+)-6 (85% optical purity) which provided the major amino nitriles (2R, 4R)-7b and (2S, 4R)-7d in a 1.7:1 ratio.

	KCN NaHSO ₂ MeOH ag		<u>α, C2, C</u>	4 ratio	
ဝူ ÇCl₃	(R) - α -methylbenzylamine 0-25° C		7a <i>R, R, S</i>	44	
人人		α N 2 4 Me	7b R, R, R	25	
H ~ Me	93%	$\ $ $\ $ $\ $ $\ $ H H H H	7c R, S, S	17	
(±) -6	0070		7d R, S, R	¹⁴ Ta	able

	<i>i</i> : $[\alpha]_D$ and ¹ H NMR Chemical Shifts at H-2 (δ , CDCl ₃)					
Compound	$[\alpha]_D$ (CHCl ₃)	δ H-2	Configuration at			
			C2,4			
7a	+87.3°	3.29	2R, 4S			
7b	$+135.9^{\circ}$	3.18	2R, 4R			
7c	-34.6°	3.73	2 <i>S</i> , 4 <i>S</i>			
7d	+14.6°	3.81	2S, 4R			

Table <i>ii</i> :	¹³ C NMR	Chemical Shifts	(δ,	CDCl ₃)	of	Com	pounds	7a-0	d
-------------------	---------------------	------------------------	-----	---------------------	----	-----	--------	------	---

<i>C</i> #	7a	7b	7c	7d
1	119.31	119.98	119.73	119.07
2	46.91	45.49	45.67	46.84
3	37.16	36.89	37.00	37.09
4	51.77	50.53	50.83	51.85
5	104.69	105.17	105.06	104.78
α	56.54	56.52	56.04	56.24
5-Me	16.91	15.38	15.87	16.93
α-Me	24.79	24.62	21.79	22.13
1'	142.71	142.74	144.19	144.02
2'-6'	126.64	126.90	126.64	126.63
	127.70	127.89	127.77	127.78
	128.73	128.74	128.72	128.72